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SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol
LENGTH

in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft3 cubic feet 0.028 cubic meters m3

yd3 cubic yards 0.755 cubic meters m3

NOTE: volumes greater than 1,000 L shall be shown in m3

MASS
ounces 28.35 grams g
pounds 0.454 kilograms kg
short tons (2,000 lb) 0.907 megagrams ( or “metric ton”) Mg (or “t”)

TEMPERATURE (exact degrees)

°F Fahrenheit
5 (F-32)/9

Celsius °C
or (F-32)/1.8

ILLUMINATION
foot-candles 10.76 lux lx
foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS
poundforce 4.45 newtons N
poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol

LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi

AREA
mm2 square millimeters 0.0016 square inches in2

m2 square meters 10.764 square feet ft2

m2 square meters 1.195 square yards yd2

ha hectares 2.47 acres ac
km2 square kilometers 0.386 square miles mi2

VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m3 cubic meters 35.314 cubic feet ft3

m3 cubic meters 1.307 cubic yards yd3

MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or “t”) megagrams ( or “metric ton”) 1.103 short tons ( 2,000 lbs) T

TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F

ILLUMINATION
lx lux 0.0929 foot-candles fc
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS
N newtons 2.225 poundforce lbf
kPa kilopascals 0.145 poundforce per square inch lbfin2

*SI is the symbol for international System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.  
(revised March 2003)
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Concrete is the dominant material used in the 
construction of buildings and infrastructure.(1) 
However, the production of ordinary portland 

cement (PC) is associated with substantial carbon 
dioxide (CO2) emissions, estimated at nearly  
9 percent of the global CO2 emissions.(2) As a result, 
the industry has sought to replace PC in concrete 
with supplementary cementitious materials (SCMs). 
Fly ash (FA), a residue from coal combustion, is 
currently the only SCM available in sufficient 
abundance to replace PC in concrete.(3) However, 
FA’s diverse chemical composition and the presence 
of glassy and crystalline phases can make it difficult 
to use in concrete production. Although it is defined 
as either Class C or F, the specific composition of a 
certain FA can greatly affect the performance of the 
concrete with which it is mixed. Even similar FAs can 
result in vastly different concrete behavior. As a 
result, over the past decades, FA has only been used 
to replace a limited amount of PC in concrete (e.g., 
≤25 percent by mass) because it has had limited 
success as a high-volume replacement.(3)

Introduction

In response to this issue, a research team conducted  
a study called “Physically Informed Data-Driven 
Methods for Greatly Enhancing the Use of 
Heterogeneous Supplementary Cementitious 
Materials in Transportation Infrastructure.” With an 
unprecedented massive concrete and FA dataset 
collection of 40,000 data records, the team conducted 
a series of experiments that used advanced material 
characterizations, machine-learning (ML) techniques, 
and numerical simulations to uncover the fundamental 
attributes governing the reactivity of FA and its 
suitability as a PC replacement. This work aimed  
to enhance the use of FA for producing more 
sustainable concrete.
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The researchers broke down the project into a series of tasks that applied ML techniques to 
create analytical models that could predict the molecular characteristics and reactivity of FA,  

  FA’s interaction with PC, and the subsequent engineering properties of concrete containing FA.

SELECTING AND CHARACTERIZING PHYSICAL/
CHEMICAL INDICATORS FOR THE REACTIVITY  
OF FA 

The reactivity of FA’s amorphous phase determines 
the ability of an FA to replace cement in concrete. But 
characterizing FA’s amorphous phase is complex and 
cost prohibitive—which has thus far prevented any 
high-throughput screening of FAs to assess their 
suitability as SCMs. To better understand FA and its 
reactivity, the research team first developed an 
analytical model to predict the atomic topology of 
calcium (Ca) aluminosilicate (CAS) glasses. CAS is 
the essential component of the amorphous phase of 
both Class C (Ca-rich) and Class F (Ca-poor) FAs. 
This model was established based on topological 
constraint theory (TCT), which predicts various 
properties of oxide glasses as a function of their 
composition and structure.

TCT has been a key enabler in developing predictive 
models that relate the composition and structure of 
glasses to their properties.(4,5) TCT simplifies complex 
disordered atomic networks into simpler nodes (the 
atoms) connected to each other by chemical bonds 
(their topological constraints). In structural glasses, 
topological constraints comprise the radial two-body 
bond stretching and angular three-body bond-bending 
constraints. The number of constraints per atom (nc) 
then offers a simple, reduced-dimensionality metric 
that is often correlated with macroscopic properties.(6)

To test this model, the researchers engaged in 
classical molecular dynamics simulations of 231 CAS 
glasses using the Large-Scale Atomic/Molecular 
Massively Parallel Simulator package.(4,5,6) CAS  
glass samples were created using the conventional 
melt-quench method (a process of melting and cooling 

the material). The glasses’ molecular structure was 
then analyzed, and the atoms within each structure 
were labeled. The interaction of the various atoms 
within the molecular structure was also examined, 
especially areas that were Ca rich and aluminum rich. 
The subsequent model predicted the average topology 
of CAS glasses based on their composition. The model 
was used to determine the state of rigidity of CAS 
glasses based on their temperature and composition. 
This model yields the state of rigidity (flexible, isostatic, 
or stressed rigid) of CAS systems as a function of 
composition and temperature. These results reveal the 
existence of correlations between network topology 
and glass-forming ability—that is, the propensity for a 
liquid to form a disordered glass or an ordered crystal 
upon quenching. This experiment suggested that 
glass-forming ability is encoded in the network 
topology of the liquid state (i.e., during the quenching 
of the FAs from the liquid state) rather than that of the 
glassy state. This finding is important since both the 
state of rigidity of the atomic network of fly ashes and 
the fraction of the glassy phase therein govern their 
reactivity (i.e., their ability to dissolve and react in 
aqueous environments to contribute to the strength 
development in concrete).

Based on this understanding of the network typology 
of FA’s glassy amorphous phase, the team developed 
a process for screening the reactivity of FAs based on 
fast, inexpensive bulk characterization called X-ray 
fluorescence (XRF). The researchers trained an 
artificial neural network (ANN) model (using a dataset 
of more than 100 FAs) that mapped out the bulk XRF 
composition of an FA to accurately predict the mass 

Project Overview
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fraction of FA’s amorphous phase and network 
topology. This new method could help maximize  
the beneficial use of FAs obtained from routine 
production as well as identify opportunities for the 
reclamation of ashes that are presently stored in 
impoundments. As figure 1 shows, easily measurable 
FA properties are mapped to key performance metrics 
to inform decisionmaking regarding which end usage 
should be preferred.

DEVELOP EXPERIMENTAL AND SYNTHETIC DATASETS 
TO TRAIN ML MODELS TO PREDICT THE ENGINEERING 
PROPERTIES OF [PC + FA] MIXTURES

The researchers developed a deep forest (DF) model  
to predict time- and composition-dependent hydration 
kinetics and compressive strength in relation to the 
mixture design of [PC + FA] binders and the physical 
and chemical properties of 10 FAs. The DF model  
was coupled with the segmentation technique 
(inserting different types of samples into specific 
segments during the training of the model) to enhance 
the prediction performance. Finally, through inference  

of the intermediate and final outputs of the DF model,  
a simple, closed-form analytical model was developed 
to predict compressive strength and reveal the 
correlations between mixture design and compressive 
strength of [PC + FA] binders.

The researchers analyzed the chemical composition  
of obtained PC and FA, produced [PC + FA] concrete 
samples, and measured each sample’s heat flow 
profiles of the [PC+FA] concrete binders. Heat-flow is 
the amount of heat following the hydration of PC that 
causes a temperature rise in cement. The researchers 
also measured the compressive strength of each 
sample. A random portion of the measured heat-flow 
profiles and compressive strength datapoints from  
the [PC + FA] concrete binders were input into a DF 
model. Five statistical parameters were employed to 
assess the performance of DF models on the testing 
datasets: mean absolute percentage error (MAPE), 
mean absolute error (MAE), Pearson correlation 
coefficient (R), root mean squared error (RMSE),  
and coefficient of determination (R2).

© 2021 American Chemical Society. 
Figure 1. Schematic. Proposed ML-based screening approach. 
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Project Overview

© 2022 Missouri University of Science and Technology. 
Figure 2. Graph. The standalone DF model predictions of heat-flow rate.
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A. [PC+ FA] binder PC-1 + 20 percent FA-C B. [PC+ FA] binder PC-1 + 50 percent FA-G 
compared to experimental measurements compared to experimental measurements 
in the testing database. in the testing database. 

C. [PC+ FA] binder PC-2 + 30 percent FA-B D. [PC+ FA] binder PC-2 + 40 percent FA-F 
compared to experimental measurements compared to experimental measurements 
in the testing database. in the testing database. 



ML Model R 
(Unitless)

R2 
(Unitless)

MAE 
(mW gcem-1)

MAPE  
(Percent)

RMSE  
(mW gcem-1)

DF 0.9476 0.8981 0.1471 13.27 0.2463

DF + 
Segmentation 0.9743 0.9871 0.0701 7.43 0.1197

Table 1. Statistical parameters pertaining to the prediction performance of DF and [DF + Segmentation] 
models on 72-h heat-flow rate. 

The DF model was used to predict heat-flow rate 
profiles of 10 randomly selected [PC + FA] binders 
every hour for a 72-h hydration period. Figure 2 shows 
predicted heat-flow rate profiles of representative  
[PC + FA] binders as produced by the standalone  
DF model against experimental measurements. To 
visually compare the predicted and measured values, 
the entire heat-flow rate spectrums are included. The 
statistical parameters pertaining to the prediction 
performance of the 72-h hydration period on the  
testing dataset are itemized in table 1.

Due to the small-volume dataset (containing only 101 
binders), the DF model was subsequently fine-tuned  
to reliably predict the heat-flow rate of FA. The team 
integrated a hydration theory-guided segmentation 
technique into the model to reduce the complexity of the 
database and enhance the model’s prediction accuracy. 
The segmentation technique is based on the hypothesis 
that, in the same segment, the hydration behavior of  
all [PC + FA] binders should be driven by the same 
mechanisms and, therefore, should manifest as similar 
kinetic (heat flow) profiles. The heat-flow rate was 
divided into three segments:

1. The first segment: The initial and induction  
periods (the first two stages of the hydration 
reaction—the chemical reaction in the concrete 
production process when water is added to 
cement). In this segment, high heat release is 
observed in the first hour, and the heat-flow  
rate for the remaining duration is low. 

2. The second segment: The acceleration period   
(the third stage of the hydration reaction, when  
it is most intense). 

3. The third segment: The deceleration period  
(the final stage of the hydration reaction,  
where the heat-flow rate diminishes). 

The research team developed an algorithm to find  
the optimal thresholds for the segmentation. Figure 3  
shows the thresholds for the different segments in 
representative binders.

After the [DF + Segmentation] model received the 
training dataset, the segmentation algorithm separated 

© 2022 Missouri University of Science and Technology. 
Note: Based on their kinetic behaviors, the profiles are divided into  
three segments: initial and induction periods, acceleration period,  
and deceleration period. 
Figure 3. Graph. Heat-flow rate profiles of randomly 
selected [PC+ FA] binders.
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Project Overview

ML Model R 
(Unitless)

R2 
(Unitless)

MAE 
(MPa)

MAPE  
(Percent)

RMSE  
(MPa)

DF 0.9368 0.8775 3.939 11.34 5.221

Analytical 
model

0.9031 0.8156 4.051 11.6 5.322

Table 2. The statistical parameters pertaining to the prediction performance of the DF and analytical 
models on [PC + FA] binders’ compressive strength. 

the training dataset into three sub-datasets. Then, three 
parallel DF models were independently trained with 
three sub-datasets to find the input-output correlations 
for each segment. When a testing dataset was 
implemented into the model, three parallel DF models 
predicted the heat-flow rate of [PC + FA] binders with 
respect to their segments. Later, the segmentation 
algorithm combined the outcomes from DF models  
to produce the entire heat-flow rate profile. Table 1 
illustrates the improved predictive power of the DF 
model integrated with the segmentation algorithm.

For predicting binder compressive strength, the team 
first tested the compressive strength of binder cube 
specimens, [PC-1 + FA] and [PC-2 + FA]. These 
measurements were compared to predictions based  
on the DF model that was trained with a database of 
compressive strength from 92 unique [PC + FA]  
binders (i.e., 2 plain PCs and 90 PCs replaced by 
FAs). As shown in figure 4 and table 2, predictions of 
compressive strength against the testing dataset are 
reliable, with R2 and RMSE being 5.22 MPa. The 
typical measurement error of compressive strength  
is 5 MPa, where the prediction error is close to the 
experimental error.(7)

DEVELOP A SET OF ML MODELS TO OPTIMIZE 
AND PREDICT THE PERFORMANCE OF  
[PC + FA] MIXTURES 

Predicting Concrete’s Strength by ML Balance  
Between Accuracy and Complexity of Algorithms

The team leveraged a dataset (comprising 10,264 
observations) of measured compressive strength 

values obtained from actual job-site concrete mixtures 
and their corresponding mixture proportions.(8) The 
reported mixture proportions reflected the actual 
mixture proportions, i.e., based on the batch weights 
of industrially produced concretes that were either 
truck- or central-plant mixed. Furthermore, all the 
strength measurements reported in the datasets used 
ASTM C150-compliant Type Ι/ΙΙ PC. Class F FA 
compliant with ASTM C618 was used in select cases.(9,10)

The team conducted a permutation importance 
analysis to select the concrete characteristics in the 

© 2022 Missouri University of Science and Technology. 
Note: The dashed line is the ideal prediction. The solid lines are ±10 percent  
error bounds. 
Figure 4. Graph. The predictions of compressive strength 
of [PC + FA] binders as produced by the DF model against 
the testing dataset. 
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datasets to be used as inputs for the ML models 
considered.(11) This analysis (conducted based on the 
ANN model) randomly shuffled each characteristic and 
tracked the associated loss in accuracy to determine 
which characteristics were most important. As shown  
in figure 5, the six most influential characteristics 
controlling concrete’s strength were (in order of 
decreasing importance):

1. Water-to-cement ratio (w/c, mass basis).

2. Fine aggregate mass fraction.

3. Water-reducing admixture (WRA) dosage.

4. Coarse aggregate mass fraction.

5. FA mass fraction.

6. Air-entraining admixture (AEA) dosage. 

Once the important characteristics were identified,  
the researchers employed multiple ML methods:

• Polynomial regression.

• ANN.

• Random forest.

• Boosted tree.

The researchers then tested the accuracy of each  
of these ML models, finding that they all predicted  
the compressive strength of [PC + FA] concrete well. 
Random forest, in particular, provided the most 
optimal balance between accuracy, complexity,  
and interpretability.

Using ML to Predict Concrete’s Strength:  
Learning from Small Datasets

The researchers also conducted a study using  
ML techniques to predict [PC + FA] concrete’s 
compressive strength with a smaller dataset.  
The dataset used in this study comprises the 28-d 
compressive strength of 10,264 commercial concretes 
and their associated mixture proportions.(8) All the 
mixtures were cast using ASTM C150-compliant  

Type Ι/ΙΙ cement and Class F FA compliant with 
ASTM C618, where FA is a by-product of coal power 
plants that can be used as SCM to replace cement  
in concrete.(12,13,14) The seven most influential features  
were considered in this study:

1. W/c ratio (in this case, the ratio between the 
mass of water and that of cement and FA).

2. Cement fraction.

3. FA fraction.

4. Fine aggregate fraction.

5. AEA dosage (used for enhancing  
concrete durability).

6. WRA dosage (used for increasing  
concrete early-stage workability).

For normalization purposes, features 2–4 were 
considered solid-weight fractions. The fraction  
of coarse aggregates was excluded as it was  
the same as features 2–4.

© 2022 University of California, Los Angeles. 
Figure 5. Graph. Permutation importance of each of  
the features considered.
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Project Overview

The team used 70 percent of the strength 
observations from its dataset as a model training for 
three ML algorithms (polynomial regression, ANN, and 
random forest). They then evaluated the accuracy of 
each model based on its RMSE and coefficient of 
determination. Each model’s learning efficiency—how 
each model learns how to predict concrete strength  
as it is exposed to increasing numbers of training 
examples—was also evaluated. Since the dataset  
for this study was relatively small, the researchers 
assessed the ability to make generalizations based  
on each model.

Interpreting the Strength Activity Index (SAI)  
of FA with ML

To promote the use of high-volume FA in concrete, the 
researchers used ML methods to infer the SAI of FAs. 

SAI is an indicator of the quality of additional  
materials mixed into cement when producing 
concrete. Leveraging a dataset comprising  
2,158 FA samples, the researchers trained  
ANN models to predict 28-d SAI based on  
the sole knowledge of ASTM C618 material  
attributes.(13) The ANN model could accurately  
predict the 28-d SAI, where the prediction  
error averaged on the testing samples is  
merely 2.2 percent. The results demonstrated  
that SAI is a complex property that does not 
systematically follow the conventional Class  
C/F classification. To gain a deeper insight  
into this matter, the team further quantified  
the influence of each attribute on SAI as  
captured by the ML model.
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Conclusions

Overall, the results of this study demonstrated  
 the ability of ML techniques to help better 
understand FA and predict its interaction  

with cement to create concrete and the concrete 
mixture’s subsequent engineering properties.

The researchers found that by examining CAS 
glass and its molecular structure as a proxy, they 
could develop a model for FA that could predict  
its reactivity potential. This work can help facilitate 
the mass use of FA to create more sustainable 
concrete by enabling screening using XRF. Bulk 
screening can help decipher which FA would be 
most suitable for concrete production.

In addition, from the work of this research team, 
the interaction of FA and cement, the [PC + FA] 

binders, and their compressive strength could be 
predicted using the DF model. The researchers 
demonstrated that this result could be accomplished 
with a limited dataset.

The results from the SAI test were the first time 
that an ML model was successfully used for 
predicting SAI. In addition, by implementing a 
model interpretation technique, the researchers 
further decoded the black-box ANN model. The 
team also found how the individual material 
attributes synergistically determine SAI. From  
a practical perspective, the accurate prediction  
of SAI can significantly promote the optimal use  
of FA for sustainable concrete construction.
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